KAM-Type Theorem on Resonant Surfaces for Nearly Integrable Hamiltonian Systems
نویسندگان
چکیده
In this paper, we consider analytic perturbations of an integrable Hamiltonian system in a given resonant surface. It is proved that, for most frequencies on the resonant surface, the resonant torus foliated by nonresonant lower dimensional tori is not destroyed completely and that there are some lower dimensional tori which survive the perturbation if the Hamiltonian satisfies a certain nondegenerate condition. The surviving tori might be elliptic, hyperbolic, or of mixed type. This shows that there are many orbits in the resonant zone which are regular as in the case of integrable systems. This behavior might serve as an obstacle to Arnold diffusion. The persistence of hyperbolic lower dimensional tori has been considered by many authors [5], [6], [15], [16], mainly for multiplicity one resonant case. To deal with the mechanisms of the destruction of the resonant tori of higher multiplicity into nonhyperbolic lower dimensional tori, we have to deal with some small coefficient matrices that are the generalization of small divisors.
منابع مشابه
Geometry of KAM tori for nearly integrable Hamiltonian systems
We obtain a global version of the Hamiltonian KAM theorem for invariant Lagrangean tori by glueing together local KAM conjugacies with help of a partition of unity. In this way we find a global Whitney smooth conjugacy between a nearly integrable system and an integrable one. This leads to preservation of geometry, which allows us to define all nontrivial geometric invariants of an integrable H...
متن کاملKam Theory near Multiplicity One Resonant Surfaces in Perturbations of A-priori Stable Hamiltonian Systems
We consider a near-integrable Hamiltonian system in action-angle variables with analytic Hamiltonian. For a given resonant surface of multi-plicity one we show that near a Cantor set of points on this surface, whose remaining frequencies enjoy the usual diophantine condition, the Hamiltonian may be written in a simple normal form which, under certain assumptions, may be related to the class whi...
متن کاملPersistence of lower dimensional invariant tori on sub-manifolds in Hamiltonian systems
Chow, Li and Yi in [2] proved that the majority of the unperturbed tori on submanifolds will persist for standard Hamiltonian systems. Motivated by their work, in this paper, we study the persistence and tangent frequencies preservation of lower dimensional invariant tori on smooth sub-manifolds for real analytic, nearly integrable Hamiltonian systems. The surviving tori might be elliptic, hype...
متن کاملA KAM Theorem for Hamiltonian Partial Differential Equations in Higher Dimensional Spaces
In this paper, we give a KAM theorem for a class of infinite dimensional nearly integrable Hamiltonian systems. The theorem can be applied to some Hamiltonian partial differential equations in higher dimensional spaces with periodic boundary conditions to construct linearly stable quasi–periodic solutions and its local Birkhoff normal form. The applications to the higher dimensional beam equati...
متن کاملInvariant Tori in Hamiltonian Systems with High Order Proper Degeneracy
We study the existence of quasi-periodic, invariant tori in a nearly integrable Hamiltonian system of high order proper degeneracy, i.e., the integrable part of the Hamiltonian involves several time scales and at each time scale the corresponding Hamiltonian depends on only part of the action variables. Such a Hamiltonian system arises frequently in problems of celestial mechanics, for instance...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Nonlinear Science
دوره 10 شماره
صفحات -
تاریخ انتشار 2000